
Module C: Understanding the Data-Generating Process

Slide Deck C11:

The Central Limit Theorem
The section in which we explicitly learn about the Central Limit
Theorem (CLT) and why it is so important to statistical infer-
ence. Examples are provided to illustrate the use of the CLT,
allowing us to focus on the distribution of the measure of center
instead of the distribution of the data.
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Today’s Objectives

Today’s Objectives

By the end of this slidedeck, you should

1 state the Central Limit Theorem
2 state the requirements for applying it
3 state its consequences

with respect to the distribution of the sample mean
with respect to the distribution of the sample proportion
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Theorem Statement

Theorem (Central Limit Theorem)
Let X be a random variable with mean µ and finite variance σ2. Let us draw a random
sample of size n from this distribution.

Then, the distribution of the sample sums converges to a Normal distribution as n gets
larger. Specifically,

n∑
i=1

Xi
d−−→ N (nµ, nσ2)

The proof of this theorem is beyond the scope of this course. It is first proven in MATH
321: Mathematical Statistics I.
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Theorem Consequences

The Central Limit Theorem (CLT) tells us the following:

The sum of independent random variables is more Normal than the distribution of the
variable itself, unless the variable is Normally distributed or if it has an infinite
variance.

The Binomial is a sum of independent Bernoulli rvs
The Poisson is a sum of independent Poisson rvs

Because the sample mean is just the sample sum, divided by a constant (n), the CLT
tells us that the distribution of sample means will tend towards Normal.

The speed of convergence depends on how closely the data distribution is to Normal.
The closer, the faster.
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Example 1: Uniform

Example

Let X ∼ Unif (a, b). Use the Central Limit Theorem to estimate the distribution of the
sum of a sample of size n.

By the CLT,
T

.∼ N (nµ, nσ2)

From our knowledge of the Uniform distribution, this means

T
.∼ N

(
n
a+ b

2 , n
(b− a)2

12

)
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Example 2: Exponential

Example

Let X ∼ Exp(λ). Use the Central Limit Theorem to estimate the distribution of the sum
of a sample of size n.

By the CLT,
T

.∼ N (nµ, nσ2)

From our knowledge of the Exponential distribution, this means

T
.∼ N

(
n

1
λ
, n

1
λ2

)
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Example 3: Binomial

Example

Let X ∼ Bin(n, p). Use the Central Limit Theorem to approximate the distribution of X.

Note that the Binomial is just the sum of n independent Bernoulli distributions. That is, if
Yi ∼ Bin(1, p),

X =
n∑

i=1
Yi ∼ Bin(n, p)

Thus, by the Central Limit Theorem, we know

X
.∼ N

(
np, np(1− p)

)
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Distribution of Sample Mean

Corollary (Distribution of Sample Mean)
Let X be a random variable with mean µ and finite variance σ2. Let us draw a random
sample of size n from this distribution.

Then, the distribution of the sample mean is

Xn
d−−→ N

(
µ,

1
n
σ2
)
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Distribution of Sample Mean

Proof From the Central Limit Theorem, we know
n∑

i=1
Xi

.∼ N
(
nµ; nσ2)

Thus,

Xn = 1
n

n∑
i=1

Xi
.∼ N

(
µ; 1

n
σ2
)
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Distribution of Sample Mean

Sub-Proof 1

E
[
Xn

]
= E

[
1
n
T

]

= 1
n

E
[
T
]

= 1
n
nµ

= µ
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Sub-Proof 2

V
[
Xn

]
= V

[
1
n
T

]

= 1
n2 V

[
T
]

= 1
n2 nσ2

= 1
n
σ2
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Distribution of Sample Mean

Corollary (Distribution of Sample Mean)
Let X be a random variable with mean µ and finite variance σ2. Let us draw a random
sample of size n from this distribution.

Then, the distribution of the sample mean is

Xn
d−−→ N

(
µ,

1
n
σ2
)
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Example 1: A First Look

Example

I draw a sample of size n = 14 from a population with mean E
[
X
]

= 126 and variance
V
[
X
]

= 42. What is the approximate distribution of the sample means?

Solution. From the Mean Corollary to the CLT, the approximate distribution of the
sample mean is

X
.∼ N (µx̄ = 126, σ2

x̄ = 1
14 42) = N (126, 3)
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Example 2: Heights

Example

I have been told that the average adult height for males in the United States has mean
µ = 69 inches and standard deviation σ = 3 inches. What is the probability of having the
mean of a sample of size 2 being less than 65 inches?

Solution. Here, we are asked to calculate

P
[
X < 65

]
To calculate this, we need to determine the distribution of X. From the CLT, this is

X
.∼ N

(
69, 1

2 32
)

= N
(
µx̄ = 69, σ2

x̄ = 4.5
)
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Example 2: Heights

And so, since X .∼ N
(

69, 32

2

)
,

P
[
X < 65

]
= pnorm(65, m=69, s=sqrt(4.5))

≈ 0.0297

Thus, the probability of observing this event, given our assumptions are correct, is quite
small. So, either I did not observe this event or my assumptions are unlikely to be true.
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Example 3: More Heights

Example

I have been told that the average adult height for males in the United States has mean
µ = 69 inches and standard deviation σ = 3 inches. What is the probability of having the
mean of a sample of size 10 being less than 65 inches?

Solution. Here, we are asked to calculate

P
[
X < 65

]
To calculate this, we need to determine the distribution of X. From the CLT, this is

X
.∼ N

(
69, 1

10 32
)

= N (69, 0.9)
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Example 3: More Heights

And so, since X .∼ N (69, 0.9),

P
[
X < 65

]
≈ pnorm(65, m=69,s=sqrt(0.9))

= 1.24133× 10−5

= 0.0000124

Thus, the probability of observing this event, given our assumptions are correct, is very
close to zero. So, either I did not observe this event or my assumptions are not correct.
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Example 4: Crime

Example

The 2000 violent crime rate for the 50 states (+DC) are given in the data file crime. What
is a 95% central confidence interval for the mean violent crime rate?

Solution. Here, we are asked to calculate the 2.5th and 97.5th quantiles (percentiles) of
the sample means drawn from the 2000 violent crime rates. Note that n = 51 here.

One way of estimating this confidence interval is to apply the corollary to the Central
Limit Theorem. From the data, we have a mean of 441.55 and a standard deviation of
241.45. The approximate sampling distribution will be

X
.∼ N

(
441.55, 1

51 241.452
)
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Example 4: Crime

Thus, we have a distribution of the sample means

X
.∼ N

(
441.55, 1

51241.452
)

We know that the endpoints of a 95% confidence interval will be at the 0.025 and 0.975
quantiles of this distribution:

qnorm(c(0.025,0.975), m=441.55, s=241.45/sqrt(51))

We are 95% confident that the population mean is between 375 and 508 violent crimes per
100,000 people.
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Example 4: Crime (Bootstrapping)

We could also estimate the confidence interval from the data. This process is called
“bootstrapping,” and here is the code:

mn= numeric ()
for(i in 1:1 e4) {

x = sample (vcrime00 , replace =TRUE)
mn[i]= mean(x)

}
quantile (mn , c (0.025 ,0.975) )

This gives a 95% confidence interval of 380 to 510.

Question: Why the difference between the two confidence intervals?
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Corollary (Distribution of Sample Proportion)

Let X ∼ Bin (n, p) be a random sample of size n from Bernoulli random variables.

Then, the distribution of the sample proportion is

P = 1
n
X

d−−→ N
(
p,

p(1− p)
n

)
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Distribution of Sample Proportion

Proof From the Central Limit Theorem, we know

X
.∼ N

(
np, np(1− p)

)
Thus,

E
[
P
]

= E

[
X

n

]
=

E
[
X
]

n
= np

n
= p

V
[
P
]

= V

[
X

n

]
=

V
[
X
]

n2 = np(1− p)
n2 = p(1− p)

n

and...

P
.∼ N

(
p,

p(1− p)
n

)
STAT 200: Introductory Statistics Module: Understanding the Data-Generating Process 22



Start of Lecture Material
The Theorem

Distribution of Sample Mean
Distribution of Sample Proportion

End of Section Material

Distribution of Sample Proportion
Example 1: Poverty
Example 2: More Poverty
Example 3: Much More Poverty
Example 4: Much, Much More Poverty

Distribution of Sample Proportion

Corollary (Distribution of Sample Proportion)

Let X ∼ Bin (n, p) be a random sample of size n from Bernoulli random variables.

Then, the distribution of the sample proportion is

P = 1
n
X

d−−→ N
(
p,

p(1− p)
n

)
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Example 1: Poverty

Example

According to the US Census, 18% of Americans are below the poverty line. If I randomly
sample n = 10 people from the United States, what is the probability that more than 20%
of them are below the poverty line?

Solution. We are asked to calculate P[ P > 0.20 ]. Thus, since the probability statement
deals with P , we need to know the distribution of P .

From the corollary, we know that the approximate distribution of the sample
proportion is

P
.∼ N

(
p,

p(1− p)
n

)
= N

(
0.18, 0.18(0.82)

10

)
= N (0.18, 0.01476)
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Example 1: Poverty

Solution (cont.). We have P .∼ N (0.18, 0.001476). Thus,

P[ P > 0.20 ] ≈ 1− P[ P ≤ 0.20 ]
= 1 - pnorm(0.20, m=0.18, s=sqrt(0.01476))

= 0.4346

This is not a small value. Thus, it should not shock me if more than 20% of my (rather
small) sample is below the poverty line.
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Example 2: More Poverty

Example

According to the US Census, 18% of Americans are below the poverty line. If I randomly
sample n = 100 people from the United States, what is the probability that more than
20% of them are below the poverty line?

Solution. We are asked to calculate P[ P > 0.20 ]. Thus, since the probability statement
deals with P , we need to know the distribution of P .

From the corollary, we know that the approximate distribution of the sample
proportion is

P
.∼ N

(
0.18, 0.18(0.82)

100

)
= N (0.18, 0.001476)
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Example 2: More Poverty

Solution (cont.). We have P .∼ N (0.18, 0.001476). Thus,

P[ P > 0.20 ] ≈ 1− P[ P ≤ 0.20 ]
= 1 - pnorm(0.20, m=0.18, s=sqrt(0.001476))

= 0.30133

This is also not a small value. Thus, it should not shock me if more than 20% of my larger
sample is below the poverty line.
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Example

According to the US Census, 18% of Americans are below the poverty line. If I randomly
sample n = 1000 people from the United States, what is the probability that more than
20% of them are below the poverty line?

Solution. We are asked to calculate P[ P > 0.20 ]. Thus, since the probability statement
deals with P , we need to know the distribution of P .

From the corollary, we know that the approximate distribution of the sample
proportion is

P
.∼ N

(
0.18, 0.18(0.82)

1000

)
= N (0.18, 0.0001476)
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Example 3: Much More Poverty

Solution (cont.). We have P .∼ N (0.18, 0.0001476). Thus,

P[ P > 0.20 ] ≈ 1− P[ P ≤ 0.20 ]
= 1 - pnorm(0.20, m=0.18, s=sqrt(0.0001476))

= 0.0499

Is this a small value? If we decide it is, then I need to question whether my sample was
representative of the population or whether my assumptions about poverty are incorrect.

On the other hand, if we decide it is not particularly small, then observing more than
20% below the poverty line in my sample is a reasonable result of our sample.
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Example

According to the US Census, 18% of Americans are below the poverty line. If I randomly
sample n = 10, 000 people from the United States, what is the probability that more than
20% of them are below the poverty line?

Solution. We are asked to calculate P[ P > 0.20 ]. Thus, since the probability statement
deals with P , we need to know the distribution of P .

From the corollary, we know that the approximate distribution of the sample
proportion is

P
.∼ N

(
0.18, 0.18(0.82)

10000

)
= N (0.18, 0.00001476)
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Example 4: Much, Much More Poverty

Solution (cont.). We have P .∼ N (0.18, 0.00001476). Thus,

P[ P > 0.20 ] ≈ 1− P[ P ≤ 0.20 ]
= 1 - pnorm(0.20, m=0.18, s=sqrt(0.00001476))

= 0.000 000 096 585

Without question, this is a small value. Thus, I need to question whether my sample was
representative of the population and whether my assumptions about poverty are incorrect.
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Today’s Summary

Now that we have concluded this lecture, you should be able to

1 state the Central Limit Theorem
2 state the requirements for applying it
3 state its consequences

with respect to the distribution of the sample mean
with respect to the distribution of the sample proportion
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Today’s R Functions

In this slide deck, we covered three R functions. This is in addition to ones we have already
experienced and ones we will experience in the future:

pbinom(x, size,prob) is the CDF for the Binomial, P[ X ≤ x ]

pnorm(x, m,s) is the CDF for the Normal = F (x) = P[ X ≤ x ]
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Supplemental Activities

The following are supplements for the topics covered today.

SCA 7a is for the distribution of the sample mean.
SCA 7c is for bootstrapping, a general method for estimating confidence intervals.

Note that you can access all Statistical Computing Activities here:
https://www.kvasaheim.com/courses/stat200/sca/

In addition to the SCA, Laboratory Activity C is helpful for learning how to handle
some continuous distributions (including the Normal distribution). The lab actually
illustrates the Central Limit Theorem, which is central to why the Normal can be used to
approximate the Binomial.

https://www.kvasaheim.com/courses/stat200/labs/
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Supplemental Readings

The following are some readings that may be of interest to you in terms of understanding
continuous distributions, including the Exponential:

Hawkes Learning: Chapter 7
Intro to Modern Statistics: Section 16.1
R for Starters: Appendix C

Wikipedia: Binomial Distribution
Normal Distribution
Central Limit Theorem
Sampling Distributions
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