

Today's Objectives

By the end of this slidedeck, you should

- discuss the differences between the Uniform, Exponential, and Normal distributions;
- express the difference between 'normal' and 'Normal'
- understand the importance of the probability density function (pdf)
- understand the importance of the cumulative distribution function (CDF)
- be able to determine the
- sample space,
- mean, variance,
- median, quantiles (percentiles)

Here are some important features of the Normal distribution:

- It is named after Carl Friedrich Gauss who advocated for its use (1809, 1794?)
- The Normal distribution arises from modeling observed randomness (errors) in astronomical and geodetic data
- It arises in variables that have a specific expected value, but demonstrate minor random variation
- It has two parameters: μ (expected value) and σ (st. dev.)
- It is the most important distribution in statistics because of the Central Limit Theorem

Normal Distribution
 Four Frobability Dxampler
 Characteristics of the Gaussian distribution

For the record, if

$$
X \sim \mathcal{N}(\mu, \sigma)
$$

then the probability density function (pdf) is

$$
f(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \mathbb{e}^{-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}}
$$

This pdf depends on values of μ and σ. Note, however, that we can standardize X (\grave{a} la Slidedeck B3 and the \mathbf{z}-score) so that the distribution no longer depends on either μ or σ.

$$
Z:=\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)
$$

It is this standard Normal distribution that textbooks tabulate.

The following is a graph of the standard Normal pdf, $\phi(z)$,

The following is a graph of the standard Normal pdf, $\phi(z)$,

Recall that the Normal distribution is a continuous distribution - not rectangular

- the CDF is not calculable

Thus, calculating probabilities requires either a Table or a computer. By tradition, "Table I" tabulates the CDF of the standard Normal distribution, $\Phi(z)$. However, computer calculations are easier to perform... and are more accurate and precise. Use them.

Here, let $X \sim \mathcal{N}(m, s)$ with $\mathbb{P}\left[X \leq x_{p}\right]=p$:
Cumulative probability, p pnorm ($\mathrm{x}, \mathrm{m}, \mathrm{s}$)
Quantile, $x_{p} \quad$ qnorm ($\mathrm{p}, \mathrm{m}, \mathrm{s}$)
Example I: Intelligence Quotient

Example

By design, intelligence quotient (IQ) measures in the United States follow a Normal distribution with $\mu=100$ and $\sigma=15$. What proportion of the US population has an IQ less than 90 ?

Solution. We are asked to calculate p such that

$$
\mathbb{P}[X<90]=p
$$

given that $X \sim \mathcal{N}(100,15)$.

This can be calculated using this R code:

$$
\operatorname{pnorm}(90, m=100, s=15)
$$

Thus, the proportion of people in the United States with IQ scores less than 90 is 0.2524925 , which is about 25%.

Example

By design, intelligence quotient (IQ) measures in the United States follow a Normal distribution with $\mu=100$ and $\sigma=15$. What proportion of Americans have an IQ score between 87 and 122 ?

Solution. We are asked to calculate p such that

$$
\mathbb{P}[87<X<122]=p
$$

given that $X \sim \mathcal{N}(100,15)$.
This can be calculated using this R code:

$$
\operatorname{pnorm}(122, m=100, s=15)-\operatorname{pnorm}(87, m=100, s=15)
$$

Thus, the proportion of Americans with an $I Q$ score between 87 and 122 is 0.7357043 , approximately 75%.

	Start of Lecture Naterial Normal Distribution Four Probability Dxamples Dind of Siection Materiaj	
Example	ence Quotient	

Example

By design, intelligence quotient (IQ) measures in the United States follow a Normal distribution with $\mu=100$ and $\sigma=15$. What proportion of Americans have an IQ score above 90 ?

Solution. We are asked to calculate p such that

$$
\mathbb{P}[90>X]=p
$$

given that $X \sim \mathcal{N}(100,15)$.
This can be calculated using this R code:

$$
1-\operatorname{pnorm}(90, m=100, s=15)
$$

Thus, the proportion of Americans with an IQ score above 90 is 0.7475075 , approximately 75%.

Example

By design, intelligence quotient (IQ) measures in the United States follow a Normal distribution with $\mu=100$ and $\sigma=15$. What IQ value separates the lower 30% from the upper 70% ?

Solution. We are asked to calculate x_{p} such that

$$
\mathbb{P}\left[X<x_{p}\right]=0.30
$$

given that $X \sim \mathcal{N}(100,15)$.
This can be calculated using this R code:

$$
\text { qnorm }(0.30, m=100, s=15)
$$

Thus, the IQ score that separates the lower 30% from the upper 70% is the $30^{\text {th }}$ percentile: 92.13.

Approximately 30\% of Americans have an IQ score less than 92.13 and approximately 70% of Americans have an IQ score of more than 92.13 .

Now that we have concluded this lecture, you should be able to
(0) discuss the differences between the Uniform, Exponential, and Normal distributions;

- express the difference between 'normal' and 'Normal'
- understand the importance of the probability density function (pdf)
- understand the importance of the cumulative distribution function (CDF)
- be able to determine the
- sample space,
- mean, variance,
- median, quantiles (percentiles)

In this slide deck, we covered these R functions regarding the Normal distribution:

- dnorm ($\mathrm{x}, \mathrm{m}, \mathrm{s}$) is the density function,

$$
\begin{aligned}
& f(x) \\
& F(x)=\mathbb{P}[X \leq x] \\
& \mathbb{P}[X \leq x]=p
\end{aligned}
$$

- pnorm ($\mathrm{x}, \mathrm{m}, \mathrm{s}$) is the CDF
- qnorm(p, m,s) is the quantile function
- $\operatorname{rnorm}(n, m, s)$ gives a random sample from this distribution

Please do not forget to use the allProbabilities document that lists all of the probability functions in R.

The following are supplements for the topics covered today.

- SCA 6a is for continuous distributions like the Normal.

Note that you can access all Statistical Computing Activities here:
https://www.kvasaheim.com/courses/stat200/sca/

In addition to the SCA, Laboratory Activity \mathbf{C} is helpful for learning how to handle some continuous distributions (including the Normal distribution). The lab actually illustrates the Central Limit Theorem.
https://www.kvasaheim.com/courses/stat200/labs/

The following are some readings that may be of interest to you in terms of understanding continuous distributions, including the Normal:

- Hawkes Learning:
- Intro to Modern Statistics:
- R for Starters:
- Wikipedia:

Sections 6.1-6.4
None
Appendix B.3, C.1, and C. 2

Gaussian Distribution
Normal Distribution

