

	Today's Objectives
Today's Objectives	

By the end of this slidedeck, you should

- understand the importance of the formula for the mean:
- know why we prefer to use the mean when we can
- know when we should not use the mean to summarize the data
(9) know how to calculate the mean, median, and mode;
- know how to calculate the percentiles (quantiles):
- quartiles, quintiles, deciles, etc.
- calculate the z-score (a.k.a. the z-transformation);
- calculate the correlation between two variables; and
- perform the calculations in R .

Definition
A measure of center of data is a number that represents the "typical" value in the data.

Examples

- mean
- median
- mode
- weighted mean
- mid-range

	Start of Lecture Matcrini Measures of Center Menaures of Position Measuren of Correlation End of Lecture Material	Sample Mean Simple MEdiam Snmple Mrade All wif the Eade
Sample Mean		

The sample mean is the center of gravity of the data. It is the most commonly used measure of center, whether it should be used or not. The Central Limit Theorem (covered at the start of Module C) does explain why the mean gives us important information, whether it is the optimal measure of center or not.

Its formula is

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Written out, the formula is

$$
\bar{x}=\frac{1}{n}\left(x_{1}+x_{2}+x_{3}+\cdots+x_{n}\right)
$$

In words, this just reads as
Add all the data values ($\sum_{i=1}^{n} x_{i}$), then divide by the number of data values $(1 / n)$.

	Start of Lecture Material Measures of Center Mensures of Fosition Measuren of Correlation Dind of Lecture Material	Sample Mean Sample Median Saminle Made All of the Codf
Sample Mean		

Note the following things about the sample mean:

- Every data value is included in the calculation.
- Every data value counts the same in the calculation.
- The order does not matter in the calculation.

One thing to think about is how each data value affects the measure of center. If a single data value can change the measure to an infinitely large value, then the measure is not robust to outliers.

The mean is not robust. A single outlier can make the mean incredibly large (or small). The next example illustrates this.

	Start of Lectuse Naterim Measures of Center Menaures of Position Measures of Correlation End of Lecture Material	Sample Mean Smuple Mrade All wf the Eode
Example I		

Let us calculate the mean download speed of my Internet connection. To do this, I measured it seven times. Here are the speeds in Mb / s :

$$
92.22 ; 94.14 ; 94.25 ; 94.10 ; 94.45 ; 94.48 ; 93.24
$$

By hand:

$$
\begin{aligned}
\bar{x} & =(92.22+94.14+94.25+94.10+94.45+94.48+93.24) \div 7 \\
& =93.84
\end{aligned}
$$

By R:

```
speed = c(92.22,94.14,94.25,94.10, 94.45,94.48,93.24)
mean(speed)
```

	Start of Lecture Material Measures of Center Mensures of Position Measures of Correlation Dind of Lecture Mhterial	Sample Mean Sample Median Saminle Made All of the Codf
Example II		

Let us calculate the mean download speed of my Internet connection. After measuring it seven times (as previously), I measured it one final time. This time, the reported speed was 100 milliard $\mathrm{Mb} / \mathrm{s}\left(1 \times 10^{11}\right)$.

Thus, all eight speed measurements are

$$
92.22 ; 94.14 ; 94.25 ; 94.10 ; 94.45 ; 94.48 ; 93.24 ; 100,000,000,000
$$

Now, the mean is " $1.25 \mathrm{e}+10$," which is $1.25 \times 10^{10}=12,500,000,000$:

```
speed2 = c(92.22, 94.14, 94.25, 94.10, 94.45, 94.48, 93.24, 1e11)
mean(speed2)
```

And so, with the inclusion of that single outlier, the mean increases by a factor of 10^{9}.
Because of this, we see that the mean is definitely not robust to outliers.

- Is this a good thing or a bad thing?

	Start of Lecture Natcriml Measures of Center Menaures of Position Measures of Correlation End of Lecture Material	Sample Mfoan Sample Median Sample Morde All Dif he All of the Eod
Sample Median		

The sample median is the "middle number" of a set of data, ranked from smallest to largest. The key to the median is that about half of the data values are above it, and about half are below it.

- When would this information be useful?

	Start of Lecture Material Measures of Center Mensures of Position Measurca of Correlation Dind of Lecture Material	Smmple Mean Sample Median Saminle Mede All of the Code
Sample Median		

While there is a 'formula' to calculate the median, we will rely on the following algorithm (for now):

- Rank the values from lowest to highest.
- If the sample size is odd, the median is the middle ranked value.
- If the sample size is even, the median is the mean of the two middle ranked values.

Note: We will see the mathematical formula in Learning Module 3 where we look at populations.

	Start of Lecture Material Measures of Center Measures of Position Measures of Correlation Dind of Lecture Material	Sample Mican Sample Median Sample Made All withe Eode
Sample Median		

Note the following things about the sample median:

- Every data rank (not value) is included in the calculation.
- Every data rank (not value) counts the same in the calculation.
- The order does matter in the calculation (eventually).

What do these tell us about how the median compares to the mean?

Note: In contrast to the mean, the median is robust to outliers. The next examples illustrate this.

Let us calculate the median download speed of my Internet connection. To do this, I measured it seven times. Here are the speeds in Mb / s :

$$
92.22 ; 94.14 ; 94.25 ; 94.10 ; 94.45 ; 94.48 ; 93.24
$$

By hand:

$$
\text { ordered : }\{92.22 ; 93.24 ; 94.10 ; 94.14 ; 94.25 ; 94.45 ; 94.48\}
$$

Since $n=7$ is odd, the value at position $(n+1) / 2=4$ is the median

$$
\bar{x}=94.14
$$

By R:

```
speed =c(92.22,94.14,94.25,94.10,94.45,94.48,93.24)
```

median(speed)

	Start of Lecture Neterind Measures of Center Mensures of Position Measuren of Correlation End of Lecture Material	Sample Mican Sample Median anmple Mract
Example II		

Let us calculate the median download speed of my Internet connection. After measuring it seven times (as previously), I measured it one last time. This time, the reported speed was 100 milliard Mb / s. Thus, all eight speed measurements are

$$
92.22 ; 94.14 ; 94.25 ; 94.10 ; 94.45 ; 94.48 ; 93.24 ; 100,000,000,000
$$

Now, the median is $94.195 \mathrm{Mb} / \mathrm{s}$:

```
speed = c(92.22, 94.14, 94.25, 94.10, 94.45, 94.48, 93.24, 1e11)
median(speed)
```

And so, with the inclusion of that single outlier, the median changes very little, from 94.14 to 94.195 .

- Is this a good thing or a bad thing?

	Start of Lecture Material Measures of Center Mensures of Position Measurca of Correlation Dind of Lecture Material	Sample Mtan sample Median Sample Mode All wi the eote
Sample Mode		

The sample mode is the most prevalent value in a set of data.

- When would this information be useful?

To calculate the mode by hand:

- Determine which value occurs most often.

With this definition, do you think that the mode is robust to outliers? Please explain.

Here is some terminology regarding the mode:

- If one value occurs most frequently, then the data are unimodal.
- If two values occurs most frequently, then the data are bimodal.
- If more than two values occurs most frequently, then the data are multimodal.
- If all values occur equally often, then the data have no mode.

	Start of Lecture Material Mensures of Center Mensures of Fosition Measures of Correlation Dind of Lecture Material	Sample Mtan sample Median Sample Mode All wi the eote
Sample Mode		

Note the following things about the sample mode:

- Every data frequency is included in the "calculation."
- Every data value counts the same in determining the frequency.
- The order does not matter in the calculation.
- Comparing data values (other than exclusion) is not needed.

How do these tell us about how the mode compares to the mean and median?

	Start of Lecture Materini Measures of Center Mensures of Position Measures of Correlation End of Lecture Material	Sample Mican Sample Mode All uft he Eode
Example		

Let us calculate the modal download speed of my Internet connection. To do this, I measured it seven times. Here are the speeds in Mb / s :

$$
92.22 ; 94.14 ; 94.25 ; 94.10 ; 94.45 ; 94.48 ; 93.24
$$

By hand: There is no mode, because all values happen once each.

By R:

```
source("http://rfs.kvasaheim,com/stat200.R")
speed = c(92.22,94.14,94.25,94.10, 94.45,94.48,93.24)
modal(speed)
```

All Of the Code	Start of Lecture Material
Measures of Center	
Measures of Fosition	
Mnd of Lesture Mhterial	

So, in summary, the above calculations can be done with this code:

```
source("http://rfs.kvasaheim.com/stat200.R")
speed = c(92.22, 94.14, 94.25, 94.10, 94.45, 94.48, 93.24)
speed2 =c(92.22,94.14,94.25,94.10, 94.45,94.48,93.24, 1e11)
mean(speed)
median(speed)
modal(speed)
mean(speed2)
median(speed2)
modal(speed2)
```

Note that you need to be able to determine what each line of code does. Doing so will help you be able to think through someone else's analysis and to better craft your own.

	Start of Lecture Matcrini Measures of Center Measures of Position Measures of Correlation [nd of Lecture Material	Measures of Position Quantile (akea. Percentilen) Quartiles, Qumtilen, aud other -lien The Z-Transtorm
Measures of Position		

If we care about describing the center of a variable, we would use a "measure of center." However, if we care about some other position in the variable, we would use a measure of position. Note that the measures of center are a specific type of measure of position. Also note that these are related to the median instead of the mean.

There are a couple of important ones to know for general research (!), a couple to know because of specific area research (\dagger), and one important one to know to understand some mathematics later in the course (\ddagger).
! Percentiles
! Quartiles
\dagger Quintiles
\dagger Deciles
\ddagger Z-score (Z-transformation)

		Mengurie of Poition Quantiles (a.k.a. Percentiles) Quartion, Qumblen, and Other -ilen The Zotenurarm
Quantiles	entiles)	

Where the median divides the data into two parts, percentiles divide the data into 100 parts. Note that the median is always a single value, whereas the percentiles can be written to indicate either a single value or a range (e.g., "a score is in the tenth percentile"). Context is key.

Quantiles are useful when we want to discuss things that are not the middle. For instance:

- In inequality research, we tend to focus on the 10 th percentile to understand poverty.
- In basic statistics, we tend to focus on the 2.5 th and 97.5 th percentiles to better understand uncertainty in our estimates.
- Education research tends to focus on the 5th, 10th, or 90th percentile.

It all depends on your field of study. Ask around in your home department to see which percentile(s) you should focus on.

| Start of Lecture Materini |
| :---: | :---: | :---: |
| Mensures of Ceuter |
| Measures of Position |
| Mesures of Correlation |
| End of Lecture Material |

When calculating the median, we saw that it divides the ordered data into two equal parts. There may be times when we wish the divide the ordered data into four parts... into "quarters." The values that divide the ordered data into four parts are called the quartiles.

- The first quartile, Q_{1} :

A value that separates the bottom 25% of the data from the top 75%.

- The second quartile, Q_{2} :

A value that separates the bottom 50% of the data from the top 50%.

- The third quartile, Q_{3} :

A value that separates the bottom 75% of the data from the top 25%.
Note that the second quartile is just the median... the value that separates the bottom 50% from the rest.

The quartiles are used in creating a typical box-and-whiskers plot (a.k.a. boxplot).

All of the -iles can be calculated in terms of the percentiles.

- The median is the 50 th percentile
- The values of Q_{1} and Q_{3} are the 25 th and 75 th percentiles
- The quintiles are the 0th, 20th, 40th, 60th, 80th, and 100th percentiles
- The deciles are the 0 th, 10 th, 20 th,\ldots, and 100 th percentiles

The R function to calculate the percentiles is quantile function. The following calculates the 5 th and 95 th percentiles of the upload speeds data loaded earlier:

```
quantile( speed, c(0.05,0.95))
```

Note that the first slot is the variable name and the second is the percentile(s) that needs to be calculated.

For the original upload speed data, calculate the following items:

- mean
- first quartile, Q_{1}
- the 90 th percentile
- all quintiles
- the difference between Q_{1} and Q_{3}

Answers:

```
source("http://rfs.kvasaheim.com/stat200.R")
speed = c(92.22,94.14,94.25,94.10,94.45,94.48,93.24)
mean(speed)
quantile(speed, 0.25)
quantile(speed, 0.90)
quantile(speed, c(0.0,0.2, 0.4, 0.6, 0.8, 1.0))
quantile(speed, 0.75) - quantile(speed,0.25)
```

	Start of Lecture Matcrini Measures of Center Measures of Position Measures of Correlation [nd of Lecture Material	Meaurer of Position Quintila (alesa, Percentilen) Quartiles, Quintilcs, and Other-iles The Z-Transform
Examples		

For the new upload speed data, calculate the following items:
() mean
(- first quartile, Q_{1}

- the 90 th percentile
- all quintiles
- the difference between Q_{1} and Q_{3}

```
Answers:
source("http://rfs.kvasaheim.com/stat200.R")
speed2 = c(92.22,94.14,94.25,94.10, 94.45,94.48,93.24, 1e11)
mean(speed)
quantile(speed2, 0.25)
quantile(speed2, 0.90)
quantile(speed2, c(0.0, 0.2, 0.4,0.6,0.8, 1.0))
quantile(speed2, 0.75) - quantile(speed2,0.25)
```

	Start of Lecture Material Mensures of Center Measures of Position Measures of Correlation Dind of Lecture Material	Meacuratio of Paition Quantiles (alkai Percentiles) Quartiles, Quintilen, and Other -ilen The Z-Transform
Z-Transform		

Finally, let us look at a transformation that allows us to compare entities across data sets - the z-transform.

Definition

The z-transform is a function (transformation) applied to the data such that the transformed values have mean 0 and standard deviation 1.

Its formula is rather straight-forward:

$$
z=\frac{x-\bar{x}}{s}
$$

- Why would we want to do something like this?

		Meaurch of Porition Quantile (aksa. Fercentilen) Quartilen, Quintiten and Othen -ilen The Z-Transform
Example		

In a course, I gave two examinations. On the first, you scored 86 ; on the second, 88 .

- Did you do better on the second exam?
- Relative to others, did you do better on the second exam?

Answers:

- Yes, by 2 points.
- I do not know. There is not enough information.

	Start of Lecture Material Mensures of Center Measures of Position Measures of Correlation Dind of Lesture Mhterial	Mencuren of Porition Quautiles (alkai Percentiles) Quartiton, Quintilent and Other -ilen The Z-Transform
Example, Part II		

In a course, I gave two examinations. On the first, you scored 86 ; on the second, 88. The class averaged 74 ± 4 on the first and 78 ± 10 on the second.

- Did you do better on the second exam?
- Relative to others, did you do better on the second exam?

Answers:

- Still yes, and still by 2 points.
- To answer this question, we need to calculate the z-scores for your two tests:

$$
\begin{aligned}
& z_{1}=\frac{x-\bar{x}}{s}=\frac{86-74}{4}=+3 \\
& z_{2}=\frac{x-\bar{x}}{s}=\frac{88-78}{10}=+1
\end{aligned}
$$

Your z -score on the first test was +3 . Your z -score on the second test was +1 . So, taking into consideration how well the other class members did, you did worse compared to them on the second test.

The interpretation of the z-score is straight-forward. On the first test, you scored three standard deviations above average. On the second, you only scored one standard deviation above average.

Note that the z-score can help you compare yourself to the class across tests. It controls for the difficulty of the examination. Since the interpretation deals with how far above (or below) the mean is in terms of standard deviations, the z-score can be used regardless of the units used for the original data.

In the future (Learning Module 4), we will use the z-transformation to scale variables so that we can draw uniform conclusions about the mean.

	Start of Lecture Material Mencures of Center Measures of Position Measurcs of Correlation Dind of Lecture Material	Mencurain af Poifition Quautiles (alsak Percentiles) Quartitop. Quintilent and Other -ilen The Z-Transform
Another Example		

Goal: Determine how well Oregon did, in terms of the unemployment rate between 1990 and 2000 , relative the the other states in the United States.

The usual analysis steps:

- Decide the analysis steps
- Load the data
- Calculate the statistics (perform the analysis)
- Interpret the results

	Start of Lecture NeterinI Measures of Center Measures of Position Measures of Correlation Dind of Lecture Material	Monurch of Postion Quintile (a.ksa. Percentilen) Quartilet, Quintilen, and Other -ilen The Z-Transform
Another Example		

This is the R code I used for this analysis (along with a secondary analysis):

```
### Preamble
# More functionality
source("http://rfs.kvasaheim.com/stat200.R")
# The data
dt = read.csv("http://rfs.kvasaheim.com/data/crime.csv")
attach(dt)
### Analysis
# Absolute unemployment rates
unemp1990[state=="Oregon"]
unemp2000[state=="Oregon"]
# Relative unemployment rates
zscore(unemp1990) [state=="Oregon"]
zscore(unemp2000) [state=="0regon"]
```

		Mchurren of Porition Quantiles (alian Percontiles) Quartilos: Quintilet, and Other -ilen The Z-Transform The Z-Transform
Another Example		

The output from the previous code tells us:
In 1990 and 2000 , Oregon's unemployment rates were 5.6% and 4.9%, respectively. The corresponding z-scores are 0.1138 and 0.9837 .

Interpretation:

While the unemployment rate in Oregon dropped from 5.6% to 4.9% between 1990 and 2000, relative to the other states in the United States, it actually increased by 0.8699 standard deviations. Thus, Oregon did worse than average in the 1990s in terms of the unemployment rate (the rate increased, relative to the typical state).

We now move beyond summary statistics about a single variable. Let us look at quantifying the relationship between variables.

Definition

All correlation measures indicate the strength of the relationship between two variables. The values range between -1 (perfect negative correlation) and +1 (perfect positive correlation).

There are three types of correlation I introduce here:

- r, the Pearson correlation coefficient
- ρ, the Spearman rank correlation coefficient
- τ, the Kendall rank correlation coefficient

The Pearson correlation coefficient, r, is the "usual" measure of correlation between two numeric variables. It was developed by Karl Pearson in 1895 from a related idea introduced by Francis Galton in the 1880s, and for which the mathematical formula was derived and published by Auguste Bravais in 1844.

The Pearson correlation coefficient:

- is not robust to outliers, so its value can be misleading if outliers are present
- only quantifies the linear relationship between two variables
- is appropriate for variables that are at least interval level

$$
r=\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)
$$

The R function is
cor (x, y, method="pearson")

Spearman's rank correlation coefficient (Spearman's ρ) is a measure of the correlation between the ranks of two variables. Essentially, it measures how well the relationship between two variables can be described using a monotonic function. Spearman devised it in 1904 based on Pearson's earlier writings (1895).

The Spearman coefficient:

- is robust to outliers
- is appropriate for variables that are at least ordinal level

Spearman's ρ is the Pearson correlation coefficient on the ranks (as opposed to the values).

```
The \(R\) function is
cor ( \(\mathrm{x}, \mathrm{y}\), method="spearman")
```


The Kendall rank correlation coefficient, commonly referred to as Kendall's τ coefficient, measures the ordinal association between two measured quantities. Like Spearman's ρ, it is a measure of rank correlation. Maurice Kendall developed it in 1938, though Gustav Fechner had proposed a similar measure in the context of time series in 1897.

Kendall's τ coefficient:

- is robust to outliers
- is appropriate for variables that are at least ordinal level

$$
\tau=\frac{2}{n(n-1)} \sum_{i<j} \operatorname{sign}\left(x_{i}-x_{j}\right) \operatorname{sign}\left(y_{i}-y_{j}\right)
$$

The R function is
cor (x, y, method="kendall")

Let us determine the correlation between the IQ of a person and how much television they watch per week. This is the R code I used for this analysis:

\# The data

iq $=c(106,100,86,101,99,103,97,113,112,110)$
$\mathrm{tv}=\mathrm{c}(7,27,2,50,8,29,20,12,6,17)$
\# The analysis
cor(iq, tv, method="pearson")
cor(iq, tv, method="spearman")
cor(iq, tv, method="kendall")
The output:
0.000378362
-0.030303030
-0.022222222
So, which of the three correlations is "most" appropriate for these two variables?

Here is a graphic of the data. It may help us determine which of the three measures would be "best."

	Start of Lecture Mhterimi Measures of Center Mensures of Position Measures of Correlation End of Lecture Material	Today's Objectives Todin's a Fimetions Supplemanntal Activiticin Supplemment Readiugs
Today's Objectives		

Now that we have concluded this lecture, you should be able to
(0) understand the importance of the formula for the mean:

- know why we prefer to use the mean when we can
- know when we should not use the mean to summarize the data
- know how to calculate the mean, median, and mode;
- know how to calculate the percentiles (quantiles):
- quartiles, quintiles, deciles, etc.
- calculate the z-score (a.k.a. the z-transformation);
- calculate the correlation between two variables; and
- perform the calculations in R .

	Start of Lecture Material Mensures of Center Menasures of Position Measures of Correlation Dind of Lecture Material	Toainyls Obiectiven Today's B Functions Supplomantil Activiticm Supplomantal Rosalingt
Today's R Functions		

In this slide deck, we saw the following R functions:

- mean
- median
- modal
- quantile
- boxplot
- zscore
- cor
- source
- read.csv
- [some condition]

The following activities may be of interest to you in terms of today's topics:

- SCA 2a is for measures of center
- SCA 2 b is for measures of position
- SCA 2c is for measures of spread (for next time)

Note that you can access all Statistical Computing Activities here:
https://www.kvasaheim.com/courses/stat200/sca/

For future interest: Laboratory Activity D explores why we prefer the mean to other measures of center. The reason has to do with precision (and not accuracy).
$\left.\begin{array}{|c|c|c|}\hline \text { Start of Lecture Material } \\ \text { Mensures of Center } \\ \text { Mensures of Fosition } \\ \text { Measurn of Correlation } \\ \text { End of Lecture Material }\end{array}\right)$

The following are some readings that may be of interest to you in terms of measures of position (and calculating them in R):

- Hawkes Learning:

Sections 3.1 and 3.3

- Intro to Modern Statistics:
- R for Starters:

Chapter 5
Section 4.2

