
Mathematical Statistics II
Statistical Computing Activity: Module 7

One purpose of these Statistical Computing Activities (SCAs) is to give you a chance

to explore statistics using the computer. Another purpose is to give you more skills

in thinking about the randomness that is life.

Usually, like here, these SCAs will have a theme and several problems dealing

with that theme or purpose. The reason for that extra layer of complexity is to tie

what we do in the class with what we can use these techniques for in our lives as

statisticians and/or consultants and/or full members of a democratic society.

The purpose of this activity is to give you some practice in collecting and

analyzing data. Since the data consist of one numeric variable and one categorical

variable, we will use one-way analysis of variance to perform the analysis. Remem-

ber that there is nothing new in analysis of variance that was not found in linear

regression. The only difference is that regression focuses on the effects of the levels

and ANOVA focuses on the effects of the variables.

? ? ?

The Procedure

The research question is “Which of these three programs is fastest?”

Step One: Collect Data. One of many important considerations in selecting the

‘optimal’ statistical program is speed. Here, we will compare the speed of Math-

ematica, Python, and R in generating a million random variates from a standard

Normal distribution.

To test this, each of the three of you will select one of the three languages

above. You will run the associated code below fifteen times (ni = 15), recording the

elapsed time in each run.



Here are the codes for the three languages:

Mathematica.

start = DateList[]

x = RandomVariate[NormalDistribution[], 10ˆ6]

end = DateList[]

end - start

Python.

import numpy as np

import datetime as dt

start = dt.datetime.utcnow()

x=np.random.normal(0,1, 1000000)

end = dt.datetime.utcnow()

print(end-start)

R.

start=Sys.time()

x=rnorm(1e6)

end=Sys.time()

end-start

Remember to record the elapsed time after each run. That will serve as your data.

Write your results on the front board, because we will all be working with the same

set of data.



Step 2: Get the data into R. Now that everyone has their data on the front

board, get that data into R. Here is how I would start:

m = "Mathematica"

p = "Python"

r = "R"

program = c( rep(m,15), rep(p,15), rep(r,15) )

mTime = c(

pTime = c(

rTime = c(

time = c( mTime, pTime, rTime )

As in our notes, the next step is to create the X and Y matrices. Since this is

one-way ANOVA, the design and response matrices are rather straight-forward to

create using some R functions.

I3 = diag(3)

J15 = matrix(rep(1,15), ncol=1)

I3J15 = I3 %x% J15

X = matrix( c(rep(1,45),I3J15), ncol=4)

Y = matrix(time, ncol=1)

Step 3: Hard Analysis. In this part, you will do the OLS calculations using

matrix multiplication. In R, the “multiply matrix” function is %*%. The inverse is

solve(). The transpose function is t(). Thus, the b vector would be:

b = solve(t(X) %*% X) %*% t(X) %*% Y

Arrrrgh!!! What happened?????

Oh yeah, I forgot the multicollinearity issue. =) So, to fix that, we just need

to drop a row from the design matrix. Whichever row we drop will serve as the base

level. All estimated effects will be measured with respect to that variable.

The column we drop is usually determined by the science question. So, each

of you needs to drop the column corresponding to your program. That means you

estimates are measured with respect to your program.



For instance, to drop the first column from the design matrix (the column of

1s corresponding to the µ), run

X = X[ ,-1]

That line will drop the common mean design information in X, ensuring that all

effects are estimated with respect to zero (the estimates will be the sample means).

Remember to drop yours.

Problem 4: First Calculations

Calculate the following matrix:

a) b

Calculate

b) the sample means in each group

Take time to make sure that you see the connection between the sample means and

the b vector. The connection should be evident.

Step 5: The SS Values. Now, let us determine the SS values. If you set up

things as in the example code above, this should be rather straight-forward (if not

easy). Remember that if the design is balanced (ni = n,∀i), then

SST =
k∑

i=1

ni∑
j=1

(ȳi − ȳ)2

=

k∑
i=1

n(ȳi − ȳ)2 = n

k∑
i=1

(ȳi − ȳ)2

In R, we can get this through this line

SST = 15*(mean(mTime)-mean(time))ˆ2 +

15*(mean(pTime)-mean(time))ˆ2 +

15*(mean(rTime)-mean(time))ˆ2

Similarly, the other two SS terms are

SSE = sum( (mTime-mean(mTime))ˆ2 ) +

sum( (pTime-mean(pTime))ˆ2 ) +

sum( (rTime-mean(rTime))ˆ2 )

and

TSS = sum( (time-mean(time))ˆ2 )



The other parts of the ANOVA table are

# df

Tdf = dim(X)[1]-1

dfT = dim(X)[2]-1

dfE = Tdf-dfT

# MS

MST = SST/dfT

MSE = SSE/dfE

# F

F = MST/MSE

# p-value

pf(F, df1=dfT,df2=dfE, lower.tail=FALSE)

Problem 6: The ANOVA Table

From those values, complete the ANOVA table.

Step 7: The Easy Analysis. In this section, we will use R to perform these

calculations for us. It all comes down to the aov function. Run the following lines:

mod = aov(times˜program)

summary(mod)

Problem 8: The ANOVA Table

From those values, complete the ANOVA table based on the R output.

Step 9: Check Yourself. Make sure that the two ANOVA tables are identical.

Step 10: Multiple Comparisons. In the previous steps, especially from the

calculated p-value, you determined that the null hypothesis (that the population

means are all equal) does not match reality. In other words, you determined that

“at least one population mean differs from the others.”

That is like eating a half of a Uno bar. Cool, awesome, and tasty — but

ultimately unsatisfying. What we would really like to determine is Which is different

and in which way? More specifically, we would like to know which is fastest.



That requires us to perform post-hoc multiple comparisons. There are many,

many, many post-hoc tests. (Create one and get a Ph.D.!)

Each has a strength and a weakness. The Fisher LSD test is the most con-

ceptually clear, followed by the Bonferroni adjustment and the Tukey HSD test.

Others may be improvements over these simple tests, but they are all more difficult

to calculate by hand.

There are many, many R functions available to perform these multiple com-

parisons. Almost all require loading different packages. Popular packages include

the multcomp package and the agricolae package. In base R, there is the TukeyHSD

function that performs Tukey’s Honestly Significant Difference (HSD) test. As a

general test, it is not dominated by any other. As such, without additional knowl-

edge of the problem, it is a good basic test. Our textbook covers how to perform

this test using our calculator and fingers. Here is how we do it in R:

TukeyHSD(mod)

Problem 11: The Final Ordering

So, look carefully through the output of that function. . . there is a lot! By this point,

with a little thought, you should be able to interpret the output and determine which

of the programs is (statistically) significantly different from the others.

• So, based on the results of Tukey’s HSD test, statistically order the results

from your analysis.
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