STATISTICS FOR ENGINEERS
 ASSIGNMENT X ANSWERS
 NOVEMBER 5, 2010

Problem 10.1

Let $X \sim \mathcal{N}\left(\mu=10, \sigma^{2}=10\right)$. What is the probability that X is larger than 13 ?

Solution: We are given that $X \sim \mathcal{N}\left(\mu=10, \sigma^{2}=10\right)$. Thus, in order to use the tables in the book, we transform X into a Z variable: $Z=\frac{X-\mu}{\sigma^{2}}$. This z is now distributed $Z \sim \mathcal{N}(0,1)$. From the formula, $z=\frac{13-10}{10}=0.3$. Going to our tables in the book, we find $\mathbb{P}[Z \geq 0.3]=0.6179$. Thus, the probability that X is larger than 13 is approximately 0.6179 .

- The z-score formula is $z=\frac{X-\mu}{\sigma}$.
- As such, $\mathbb{P}[X>13]=1-\mathbb{P}[X \leq 13]=1-0.8289=0.1711$

Problem 10.2

In a sample of 43 power companies in the southern United States, 20 indicated that state rules forced them to change their plans for building coal-fired power plants. In a sample of 93 power companies in the western United States, 55 indicated that state rules forced them to change their plans for building coal-fired plants. Can we conclude that the proportion of power companies in the South that had to change their plans for building coal-fired plants is less than those in the West?

Solution: This is a difference of proportions test with independent samples. Thus, we use the formula on Page 428 to compute a z-score:

$$
\begin{aligned}
z & =\frac{\hat{p}_{X}-\hat{p}_{Y}}{\sqrt{\hat{p}(1-\hat{p})\left(1 / n_{X}+1 / n_{Y}\right)}} \\
& =\frac{0.4651-0.5914}{\sqrt{0.5662(1-0.5662)(1 / 43+1 / 93)}} \\
& =0.87
\end{aligned}
$$

Now, going to our z-table, we find the probability $\mathbb{P}[Z \geq 0.87]=0.1922$. Thus, as this number is greater than α, we can conclude that the two proportions are the same.

- The null hypothesis is $H_{0}: p_{W} \geq p_{S}$. The null hypothesis ALWAYS contains the 'equals' portion.
- The \hat{p} is calculated incorrectly. $\hat{p}=0.5515$.
- With this, $z=1.377$. The one-tailed probability is $p=0.0838$. Thus, we cannot reject.
- Since the samples have the southern proportion less than the western proportion, we know $p<0.500$.

Problem 10.3

Let us (somehow) know that the reaction times of a mouse have a symmetric distribution. A psychology student ran an experiment where she measured the time between when she screamed at the mouse and when it jumped. She got the following reaction times for Mouse 1: $36,28,29,20,38$. She got the following for Mouse 2: $34,41,35,47,49,46$. Can we conclude that there is a significant difference in the reaction times between the two mice?

Solution: We are given that the distributions are symmetric, although they are probably not Normal, since we have some outliers. Thus, we will use a nonparametric test, the Mann-Whitney test.

Ranking the reaction time gives us $20,28,29,34,35,36,38,41,46,47$, and 49. These, respectively, come from Mouse number $1,1,1,2,2,1,1,2,2,2$, and 2. The sum of the ranks for Mouse 1 is 19 .

The sum of the ranks for Mouse 2 is 47 . The difference between the two is $47-19=26$. Thus, $W=26$. Using Table A. 5 in the back of the book, with $n=6$ and $m=5$, we get that the p -value is greater than 0.0628 . Thus, at the usual level ($\alpha=0.05$), we can conclude that the mice have the same reaction times. \diamond

- We discover that $47-19=28$, not 28 .
- The Mann-Whitney test does not have you subtract the two values. The W statistic is one or the other.
- This is a two-tailed test. As such, we need to know what number Table A. 5 actually gives us area under one tail (like the other tables).
- Thus, you will need to double the table probability (value you read off in the table).

Problem 10.4
A scale is calibrated by weighing a 1.000 kg test weight 60 times. Those readings are Normally distributed and have a mean of 1.006 kg and a standard deviation of 2 g . Find the p-value for testing $H_{0}: \mu=1.000 \mathrm{~kg}$.

Solution: We must first calculate the z-value for this problem. Here, $z=\frac{0.6}{2}=$ 0.3 . Looking in our z-tables, we find $p=0.6179$. Thus, since this is greater than 0.05 , we accept the null hypothesis that the scale is perfectly calibrated.

- The units for the measurements are in kg. The units for the standard deviation are in g . Thus, either do the test with $\bar{x}=1006 \mathrm{~g}$ or $s=0.002 \mathrm{~kg}$. Be consistent.
- The correct z-score formula needs an n value in it, since we are looking at sample means: $z=\frac{\bar{x}-\mu}{s / \sqrt{n}}$.
- We do not accept the null hypothesis. It is obvious that the scale is not perfectly calibrated. We can, in fact, conclude that the nll hypothesis is extremely unlikely $(z \approx 23 ; p \approx 0)$.

Problem 10.5

Election returns from the 2009 presidential election in Iran have the following first digit frequencies:
\vdots
The Center for Electoral Forensics performed the Benford Test on the frequencies and concluded that there was a statistically large departure from expectation for these digit frequencies. Were they correct?

Solution: The null hypothesis is that the digit frequencies follow the Benford distribution, which is provided in the final problem of Examination One. To test this hypothesis, we will perform a chi-squared test. The expected frequencies and relevant calculations are in the following table.

Digit	1	2	3	4	5	6	7	8	9
Observed	66	60	53	46	40	33	25	16	11
Expected	40	40	40	40	40	40	40	40	40
$O-E$	26	20	13	6	0	-7	-15	-24	-29
$(O-E)^{2}$	676	400	169	36	0	49	225	576	841
$(O-E)^{2} / E$	16.9	10	4.225	0.9	0	1.225	5.625	14.4	21.025

The chi-square statistic is the sum of this last row, $X^{2}=74.3$. The degrees of freedom is $\nu=8$. Therefore, the p-value is $6.8 E-13$. As this is less than our usual $\alpha=0.05$, we can reject the null hypothesis and agree with the conclusions of the Center for Electoral Forensics.

- The expected values are incorrect. These are from the uniform distribution, not the Benford distribution.
- We, too, can agree with the conclusion of CEF. Hopefully, you notice that one can get the same conclusion while doing it wrong.

